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Abstract. The fundamental axisymmetric boundary value problem of a single vortex
penetrating a half-space of a type-II superconductor is investigated. From the appropriate static
solution, closed form results are developed for all electromagnetic fields and densities within the
superconductor. For the half-space above the superconductor, closed form results are obtained
for all quantities with the introduction of a sole Laplace transformation. These results provide the
analytic evaluation of a wide variety of derived quantities including magnetic moment, energy,
and flux. The discussion has specific applications to magnetic force microscopy and other probe
techniques.

Recently there have been many advances in surface and scanning probe technologies [1].
In particular, low-temperature magnetic force microscopy has been applied to the imaging
of superconductors [2, 3]. In this technique, a flexible cantilever is used to measure the
magnetic force between a magnetized tip and the field of the sample. Force detection
at the picoNewton level is possible and may be improvable. It is possible that refined
MFM or similar techniques may be able to shed light on the underlying mechanism in
high transition temperature (Tc) materials by precise measurements of the penetration depth.
Other information that may be derivable from MFM measurements is the nature of vortex
pinning in many sorts of materials.

One of the fundamental theoretical problems in this area is determining the
electromagnetic fields within and without a superconducting half-space. Here the sample
is treated as semi-infinite, with a perfectly flat surface. This problem has been approached
by several different means, and an early significant calculation was that of Pearl [4, 5], to
which I briefly return near the end. Lately it has been shown how the magnetic field, which
is of primary interest to MFM, can be solved for directly [6, 7]. The appropriate interface
conditions and Greens functions have been written [7]. However, previous treatments have
been satisfied with integral representations of the results, often only giving explicit results
in limiting cases. This paper develops closed form results, showing the incompleteness of
earlier work, and how numerical integration can be avoided in most cases.

I make the assumption of axisymmetry throughout this exposition, and rely on
background given in [7]. I consider the problem of a single vortex perpendicularly
penetrating a half-space. It is shown that the fields and densities within the superconductor
(for z 6 0) can be put into closed form and the field above the superconductor requires the
introduction of only one Bessel function integral.
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The subscript 1 emphasizes upper half-space and 2 lower half-space quantities [7]. Let
λ2 be the London penetration depth andφ0 the flux quantum. Within London theory the
magnetic field may be determined by Fourier transformation and is given by [7]
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2πλ2
2

∫ ∞
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and the supercurrent density by
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whereγ2(k) ≡
√
k2+ λ−2

2 . In equations (1)–(5)Jn is the Bessel function of ordern; K0

andK1 are order zero and one modified Bessel functions, respectively.
Of special interest are the values of interface quantities, those atz = 0. These are simpler

expressions which should be useful for very-near surface scans in probe microscopy. They
also provide insightful special cases of the later results. The magnetic field at the surface
is given by
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and
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The modified Bessel functions of ordern are In and Kn of the first and second kind,
respectively. In equation (6), whenρ = 0, it is necessary to add a term(λ2

2/ρ)δ(ρ) to the
right-hand side, whereδ(ρ) is a one-dimensional Dirac delta function. The supercurrent
density at the surface is
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In order to give an indication of how the results (6)–(8) may be obtained, note from
equations (3) or (4) that the radial component of magnetic field may be written as [8]
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For the vertical component it may be noted from equation (1) that
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The delta function arises as the result of the orthogonality of Bessel functions on the half
line. By using the Bessel differential equation forJ0, the first term on the right-hand side
of equation (10) can be written as

λ2
2
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∂

∂ρ
ρ
∂

∂ρ
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2λ2

)
K0

(
ρ

2λ2

)
. (11)

Evaluating the partial derivatives with respect toρ, using the derivativesK ′0 = −K1 and
I ′0 = I1, and using the Wronskian relation

I1(u)K0(u)+ I0(u)K1(u) = 1

u
(12)

then gives equation (6).
For purposes of describing the fields in the superconductor, I introduce the definite

integrals
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(13b)

whereR2 = ρ2+ z2. The functionN(R, z) is the same as the Foster–Lien integralL(a, r)

[7]. Within the superconductor thez-component of the magnetic field is
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while theρ-component is given by
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The supercurrent density is given by
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It can be easily checked that equations (14)–(16) comply with Ampere’s law,
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Carrying out the partial differentiations, the radial component of the magnetic field can
be written as
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Equation (15) forH2ρ can be derived by following steps similar to equation (9) and
using the definitions (13). In finding the supercurrent density from equation (5), the integral
is given by

cφ0
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2

∫ ∞
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In findingH2z from equation (2), the factork2/(k2+λ−2
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In turn this integral can be found in terms of the functionsP andN .
For describing the magnetic field in the upper half-space, put

M(ρ, z) ≡
∫ ∞

0

J0(kρ)

γ2
e−kzdk. (21)

This integral can be interpreted variously as either a Laplace or Bessel transform; it is the
sole remaining definite integral not described in terms of solutions of the Bessel differential
equation. Then the vertical component of magnetic field is from equation (1)

H1z(ρ, z > 0) = φ0

2π

(
−∂

2M

∂z2
+ z

(ρ2+ z2)3/2

)
(22)

and the radial component from equation (3) is given by

H1ρ(ρ, z > 0) = φ0

2π

(
− ∂
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∂ρ∂z
+ ρ
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)
. (23)

These forms are especially useful for studying the behaviour of the field for large values of
z or in the limit λ2→ 0.

From the given expressions for the field components it is then possible to compute
magnetic field energy and magnetic fluxes through specified surfaces [6, 7]. As a simple
example, the total flux up through the interfacez = 0 can be computed using equation (6)
as

2π
∫ ∞

0
ρ dρHz(ρ, z = 0) = φ0. (24)

In evaluating the integral the net contribution of the modified Bessel functions can be
shown to be zero, by integration by parts. The flux quantum arises as the integration
over the delta function contribution atρ = 0. Similarly, the total radially outward
magnetic flux in the upper half-space isφ0. This can be seen by evaluating the integral
limρ→∞ 2πρ

∫∞
0 dz H1ρ(ρ, z > 0).

The use of the Wronskian relation (12) shows equation (8) to be equivalent to the
interface result obtained by Pearl [4, 5]. The general integral evaluations avoided there have
been performed in this paper.

This paper has completed the analytic evaluation of the fields and densities within a semi-
infinite superconductor containing a single vortex. London theory has been used wherein a
straight Abrikosov vortex is treated as a line source. As usual, Meissner screening within
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the superconductor causes the fields to decrease with increasing distance. On the other
hand, for an analogous problem of wave propagation in a half-space, [9] may be consulted.

The integrals treated here come from a Fourier–Bessel–Laplace representation of fields.
The magnetic field and supercurrent density have been explicitly written. From either direct
integration of the relationB = ∇×A or by use of the London relation the vector potentialA
can be readily obtained. The only remaining integral for the upper half-space is the function
M(ρ, z), equation (21), and it can be written in several different forms [10]. Therefore, the
use of numerical quadrature can be greatly minimized.

From the results presented here a wide variety of derived quantities can be calculated,
including magnetic moments and fluxes, as mentioned. Furthermore, the magnetostatic
interaction energies and forces needed for magnetic force microscopy can be obtained. For
a discussion of such results for axisymmetric boundary value problems for a superconductor
with a planar surface, see [11]. There closed form expressions are obtained for arbitrary
probe height above the vortex.

The closed form results given here may be all the more important for use in magnetic
resonance force microscopy (MRFM) [1]. In this technique, a small rf magnetic field is used
in addition to, for example, a sample mounted on an elastic cantilever in the inhomogeneous
field of a magnetized tip, thus combining features of nuclear magnetic resonance imaging
and atomic force microscopy. This method then holds promise for probing the detailed
electromagnetic structure of a sample below its surface. If MRFM can be applied to
superconductors, then many interesting theoretical and experimental possibilities should
evolve.
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